Studi Literatur Penerapan Machine Learning untuk Analisis Data Konsumen pada Minat Beli Konsumen

Authors

  • Achmad Syauqi Ilal Jinan Perbanas Institute, Jakarta, Indonesia.

DOI:

https://doi.org/10.38035/jmpd.v2i4.316

Keywords:

Mechine Learning (ML), Alogaritma Media Sosial, Niat Pembelian

Abstract

Machine Learning (ML) telah menjadi alat penting dalam menganalisis data konsumen, terutama dalam memahami faktor yang mempengaruhi minat beli. Studi ini meninjau berbagai penelitian terkait penerapan ML dalam analisis sentimen, pengolahan data media sosial, serta dampaknya terhadap keputusan pembelian konsumen. Temuan menunjukkan bahwa algoritma ML, seperti Support Vector Machine (SVM), Random Forest (RF), dan Natural Language Processing (NLP), dapat meningkatkan pemahaman terhadap pola perilaku konsumen. Selain itu, media sosial memainkan peran signifikan dalam membentuk persepsi dan keputusan konsumen, terutama melalui algoritma yang mengkurasi konten yang dipersonalisasi. Studi ini menyoroti pentingnya penerapan ML dalam strategi pemasaran digital untuk meningkatkan efektivitas kampanye dan daya tarik produk.

References

Ali, M., Ullah, S., Ahmad, M.S., Cheok, M.Y., Alenezi, H., 2023. Assessing the impact of green consumption behavior and green purchase intention among millennials toward sustainable environment. Environ. Sci. Pollut. Res. 30 (9), 23335–23347. https://doi.org/10.1007/s11356-022-23811-1.

Alsemaree, O., Alam, A. S., Gill, S. S., & Uhlig, S. (2024). Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions. Heliyon, 10(2024), e27863. https://doi.org/10.1016/j.heliyon.2024.e27863

Azer, J., Blasco-Arcas, L., & Alexander, M. (2024). Visual modality of engagement: Conceptualization, typology of forms, and outcomes. Journal of Service Research, 27 (2), 231–249. https://doi.org/10.1177/10946705231190867

Diamond, N., Sherry, J. F., Muñiz, A. M., McGrath, M. A., Kozinets, R. V., & Borghini, S. (2009). American girl and the brand gestalt: closing the loop on sociocultural branding research. Journal of Marketing, 73, 118–134.

Fiore, A. M., Kim, J., & Lee, H.-H. (2005). Effect of image interactivity technology on consumer responses toward the online retailer. Journal of Interactive Marketing, 19 (3), 38–53. https://doi.org/10.1002/dir.20042

Fox, A. K., Nakhata, C., & Deitz, G. D. (2019). Eat, drink, and create content: A multi- method exploration of visual social media marketing content. International Journal of Advertising, 38(3), 450–470. https://doi.org/10.1080/02650487.2018.1535223

Gombos, N., Julianna, V., Bíró-Szigeti, S., & Molontay, R. (2025). Investigating banks’ social media content and consumer reactions with machine learning. Journal of Open Innovation: Technology, Market, and Complexity, 10(100512). https://doi.org/10.1016/j.joitmc.2025.100512

Ha, S., Huang, R., & Park, J.-S. (2019). Persuasive brand messages in social media: A mental imagery processing perspective. Journal of Retailing and Consumer Services, 48, 41–49. https://doi.org/10.1016/j.jretconser.2019.01.006

Le, T. T. (2024). Greening the future: How social networks and media shape youth’s eco-friendly purchases. Journal of Open Innovation: Technology, Market, and Complexity, 10(100410), 1–15. https://doi.org/10.1016/j.joitmc.2024.100410

Ma, S., Zheng, X. J., Lu, P., & Xu, Z. (2024). Promoting upcycled food: An analysis of social media communication strategies of Upcycled Food Association. Future Foods, 22, 100483. https://doi.org/10.1016/j.fufo.2024.100483

Mangold, W.G., Faulds, D.J., 2009. Social media: the new hybrid element of the promotion mix. Bus. Horiz. 52 (4), 357–365. https://doi.org/10.1016/j. bushor.2009.03.002.

Moran, G., Muzellec, L., & Johnson, D. (2019). Message content features and social media engagement: Evidence from the media industry. Journal of Product & Brand Management, 29(5), 533–545. https://doi.org/10.1108/JPBM-09-2018-2014

Murwaningtyas, F., Harisudin, M., Irianto, H., 2020. Effect of celebrity endorser through social media on organic cosmetic purchasing intention mediated with attitude. KnE Soc. Sci. 152–165. https://doi.org/10.18502/kss.v4i3.6393.

Pamuksuz, U., Yun, J. T., & Humphreys, A. (2021). A brand-new look at you: Predicting brand personality in social media networks with machine learning. Journal of Interactive Marketing, XX, XXX. https://doi.org/10.1016/j.intmar.2021.05.001

Poirier, S.-M., Cosby, S., Sénécal, S., Coursaris, C. K., Fredette, M., & Léger, P.-M. (2024). The impact of social presence cues in social media product photos on consumers’ purchase intentions. Journal of Business Research, 185, 114932. https://doi.org/10.1016/j.jbusres.2024.114932

Scholarhub.ui.ac.id. (2023). Filter Bubble dan Pengaruhnya terhadap Keputusan Konsumen dalam Media Sosial. [Online] Available at: https://scholarhub.ui.ac.id

Sun, Y., Xing, J., 2022. The impact of social media information sharing on the green purchase intention among generation Z. Sustainability 14 (11), 6879. https://doi. org/10.3390/su14116879.

Thompson, C. J., Rindfleisch, A., & Arsel, Z. (2006). Emotional branding and the strategic value of the Doppelgänger brand image. Journal of Marketing, 70(1), 50–64.

Truc, L. T. (2024). Greening the future: How social networks and media shapes youth’s eco-friendly purchases. Journal of Open Innovation: Technology, Market, and Complexity, 10(2024), 100410. https://doi.org/10.1016/j.joitmc.2024.100410

Van Rompay, T. J. L., De Vries, P. W., & Van Venrooij, X. G. (2010). More than Words: On the Importance of Picture-Text Congruence in the Online Environment. Journal of Interactive Marketing, 24(1), 22–30. https://doi.org/10.1016/j.intmar.2009.10.003

Published

2024-12-29